
1. Structure et réactivité

Rappel : système conjugué = système plan

- Réactivités de la double liaison et du >C=O, parfois modulées
- Réactivité propre au système conjugué

Réactivité de la liaison π C=C

Cf réactivité des alcènes

Hydrogénation catalytique

$$C = C - C - R$$

$$| \begin{array}{c} H_2 \\ \hline Pd/C \end{array} \qquad | \begin{array}{c} \Gamma \\ C - C - C - R \\ \hline \end{array}$$

Addition syn (cis)

> Additions électrophiles

$$C = C - C - R$$

$$C = C - C - R$$

$$C = C - C - C - R$$

$$C = C - C - C - R$$

$$C = C - C - C - R$$

$$C = C - C - C - R$$

$$C = C - C - C - R$$

$$C = C - C - C - R$$

$$C = C - C - C - R$$

$$C = C - C - C - R$$

$$C = C - C - C - R$$

Addition anti (trans)

Réaction très lente, difficile

Réactivité du carbonyle CO

Cf réactivité des cétones et aldéhydes

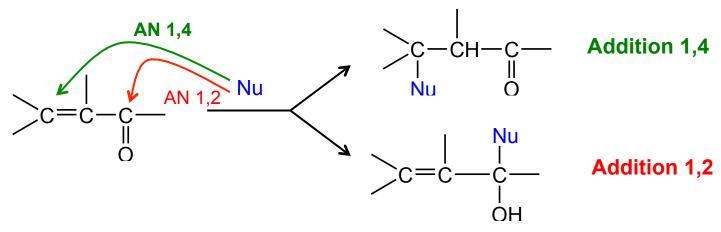
$$\begin{array}{c|c}
\delta^{+} & \delta^{+} \\
C = C - C - R \\
 & \parallel \\
 & O \delta^{-}
\end{array}$$

> Additions nucléophiles 1,2

$$C = C - C - R \xrightarrow{Nu} C = C - C - R \xrightarrow{Nu} C = C - C - R$$
Intermédiaire tétraédrique

Exemple : LiAlH₄ (Nu = H⁻), R-Li....

Acidité des atomes d' H portés par Csp3 en α


Réactivité due au système conjugué

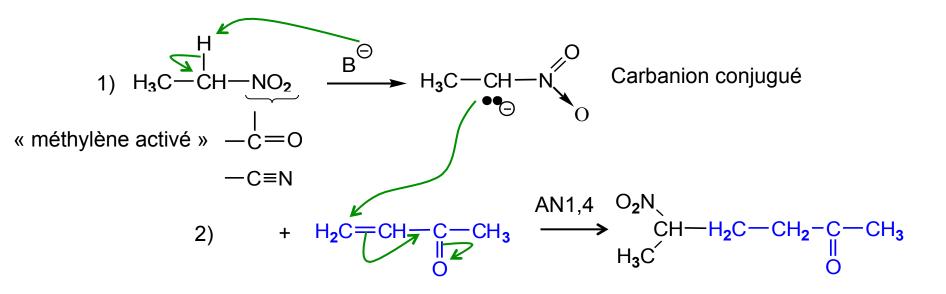
> Additions nucléophiles 1,4

Acidité des atomes d' H portés par C en γ

- 1. Structure et réactivité
- 2. Additions nucléophiles 1,4 et 1,2

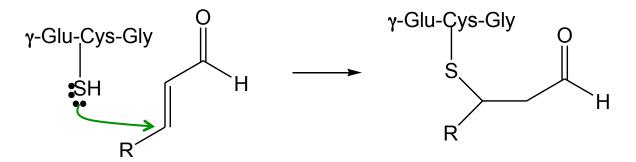
2. Additions nucléophiles 1,4 et 1,2

Facteurs orientant vers une AN 1,2 ou 1,4 :


- * Nature du nucléophile
- * Nature du composé carbonylé

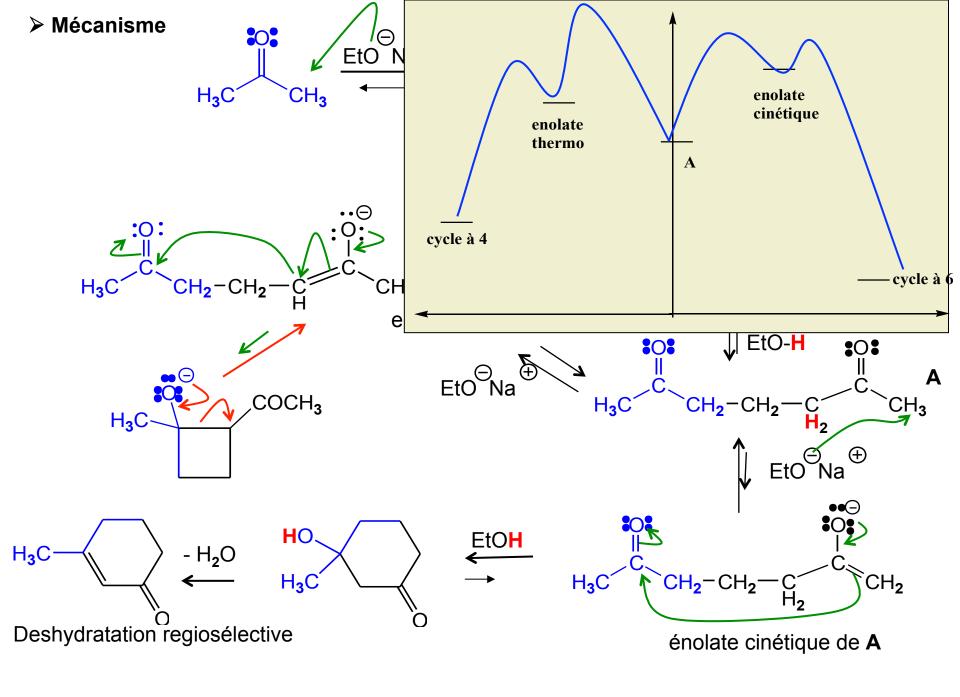
Les aldéhydes sont plus sujets aux AN 1,2 que les cétones

Présence de R gênante pour AN 1,2 (angle de Bürgi-Dunitz)


- 1. Structure et réactivité
- 2. Additions nucléophiles 1,4 et 1,2
 - 2.1. Addition de Michaël et annellation de Robinson

Addition de Michaël = Addition nucléophile **1,4** d' un <u>carbanion</u> sur des composés, carbonylés ou nitriles, α,β -insaturés

Exemple addition 1,4


Exemple : G-SH

Addition 1,6 : Mécanisme d'action de la mitomycine C (anticancéreux)

Annellation de Robinson : obtention d'un cycle

Réaction de Michaël suivie d'une aldolisation intramoléculaire avec déshydratation

- 1. Structure et réactivité
- 2. Additions nucléophiles 1,4 et 1,2
 - 2.1. Addition de Michaël et annellation de Robinson
 - 2.2. Addition d'organométalliques

2.2. Addition d'organométalliques

$$H_{3}C-CH=CH=CH=CH=CH=CH=CH=CH=CH=3$$
 $H_{3}C-CH=CH=CH=CH=CH=3$
 $H_{3}C-CH=CH=CH=CH=CH=3$
 $H_{3}C-CH=CH=CH=CH=3$
 $H_{3}C-CH=CH=CH=3$
 $H_{3}C-CH=CH=3$
 $H_{3}C-CH=3$
 H_{3

Addition 1,2 ou 1,4 ou mélange en proportions variables, en fonction de l'organométallique utilisé.

CH ₃ M	% alcool (1,2)	% cétone (1,4)
CH₃Li	≈ 100	≈ 0
CH ₃ Li /Cul	≈ 0	≈ 100
CH₃MgBr	≈ 25	≈ 75

CH ₃ M	% alcool (1,2)	% cétone (1,4)
CH₃Li	≈ 100	≈ 0
CH ₃ Li /Cul	≈ 0	≈ 100
CH₃MgBr	≈ 25	≈ 75

➤ Organolithiens R-Li

S' additionnent toujours exclusivement en 1,2

Charges bien dissociées R δ- et Li δ+

$$-CH = CH - C - \longrightarrow -CH = CH - C - \bigoplus_{\text{H_3C O^{\circleddash} Li}}$$

$$CH_3 - Li$$

$$\delta - \delta +$$

CH ₃ M	% alcool (1,2)	% cétone (1,4)
CH₃Li	≈ 100	≈ 0
CH ₃ Li / Cul	≈ 0	≈ 100
CH₃MgBr	≈ 25	≈ 75

> R-Li + Cul = organocuprates

Synthèse des cuprates in situ:

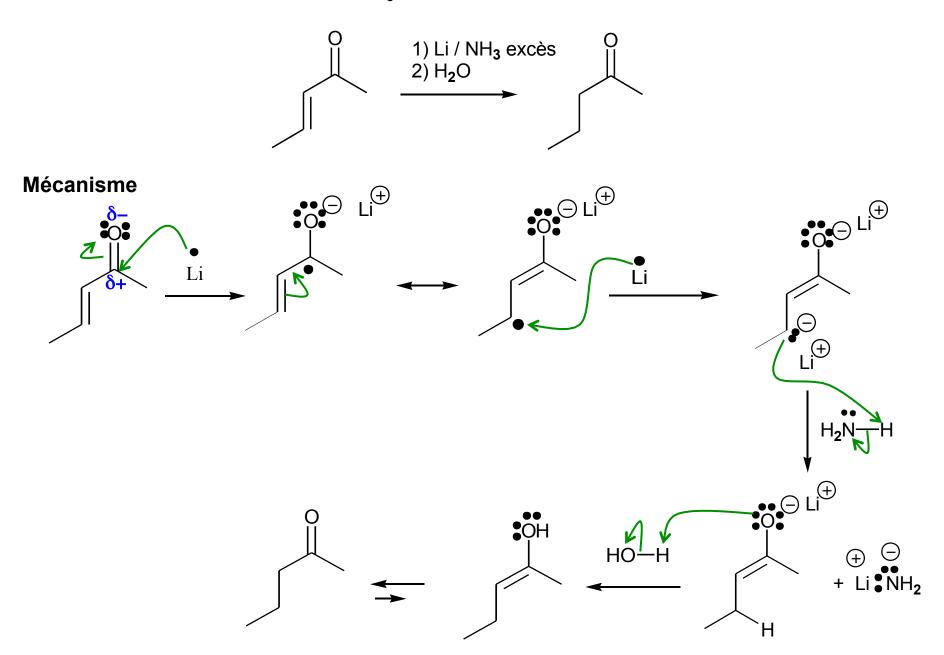
$$2CH_3Li + Cul \longrightarrow (CH_3)_2CuLi + LiI$$

S' additionnent toujours exclusivement en 1,4

CH ₃ M	% alcool (1,2)	% cétone (1,4)
CH₃Li	≈ 100	≈ 0
CH ₃ Li / Cul	≈ 0	≈ 100
CH₃MgBr	≈ 25	≈ 75

Organomagnésiens R-MgX

Addition sous influence stérique, RMgX s' additionne en 1,2 ou 1,4, du côté le plus accessible


$$H_{3}C-CH = CH - C - CH_{3} \xrightarrow{1) CH_{3}MgBr} H_{3}C-CH-CH_{2}-C-CH_{3} + H_{3}C-CH=CH-C-CH_{3} \\ O - AN 1,4:75\% O - AN 1,2:25\%$$

$$1) CH_{3}MgBr$$

$$CH_{3} - CH_{3} + H_{3}C-CH=CH-C-C-CH_{3} + H_{3}C-CH=CH-C-C-CH_{3} \\ O - CH_{3} + CH_{3}$$

- 1. Structure et réactivité
- 2. Additions nucléophiles 1,4 et 1,2
- 3. Réduction par Li (ou Na) dans NH₃

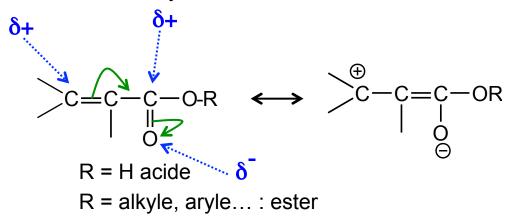
3. Réduction par Li (ou Na) dans NH₃

- 1. Structure et réactivité
- 2. Additions nucléophiles 1,4 et 1,2
- 3. Préparations

3. Préparations

3.1. Aldolisation

$$C = C + H_2 C - C - Base$$


$$C = C - C - C + H_2 C$$

3.2. Bromation - Elimination

Esters et acides α,β -insaturés

1. Structure et réactivité

Similaire aux aldéhydes et cétones

1.1. Additions nucléophiles 1,2 ou 1,4

* Avec les esters

* Avec les acides
$$C = C - C - C - O - H$$

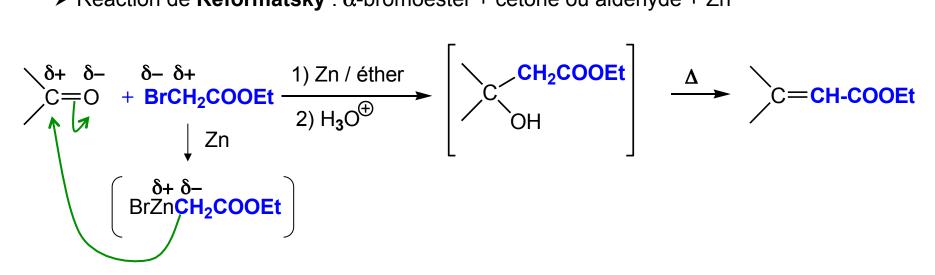
$$R - M$$

$$R - M$$

$$R - M$$

$$R - M$$

$$R - H$$


$$R - H$$

$$C = C - C - C - O - H$$

$$R - H$$

2. Préparations

- > Adaptation des méthodes connues : aldolisation, bromation/élimination...
- \triangleright Réaction de **Réformatsky** : α -bromoester + cétone ou aldéhyde + Zn

Un organozincique réagit sur une cétone ou un aldéhyde, pas sur les esters moins réactifs

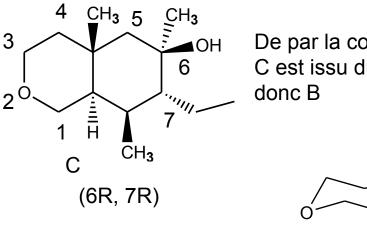
Soit la suite de réactions suivante (la réaction B → C est stéréosélective) :

C possède 5 carbones asymétriques (en positions 4a, 6, 7, 8 et 8a) :

Carbone d'indice 4a : configuration R

Carbone d'indice 6 : configuration R

Carbone d'indice 7 : configuration R

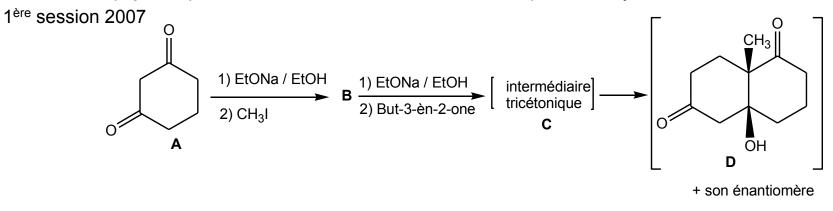

Carbone d'indice 8 : configuration S

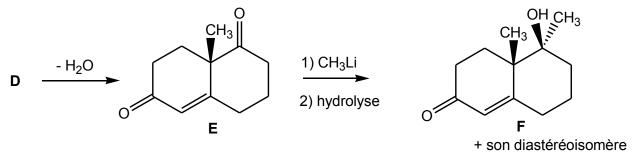
Carbone d'indice 8a : configuration R

- 2.1 Donner une représentation en perspective de B, sachant que les conformations de ce type de dérivés se calquent sur celles des dérivés de décaline.
- 2.2. Donner la structure de C (selon une représentation du type de celle donnée pour A) en justifiant en quelques mots sa formation majoritaire.

A partir de **A**, addition 1,4 de l'organocuprate formé in situ par CH₃Li et Cul pour donner B ou B' (création d'un carbone asymétrique R ou S)

A partir de B, on réalise une addition de CH₃Li sur la cétone pour obtenir le produit C, dont on donne la configuration des carbones asymétriques, attribuée par numérotation de C :




De par la configuration en 7, C est issu du produit 1 qui est donc B

La formation majoritaire de C s' explique par la présence en axial des deux méthyles, qui font que l'attaque équatoriale de CH₃Li est majoritaire

B (= 1)

Exercice n°5 (6 points) Soit la suite de réactions suivante au départ de la cyclohexane-1,3-dione A :

- La réaction A → B est une réaction de monoalkylation régiosélective en position 2.
 Donner un schéma réactionnel de cette réaction en expliquant en quelques mots la régiosélectivité de l'alkylation.
- 2) Donner une représentation en perspective de l'intermédiaire **C** dans sa conformation la plus stable en complétant le schéma ci-dessous. Représenter à la suite le composé **D** en perspective, en proposant une explication de la stéréochimie constatée au niveau des carbones de jonction :

3) Dans la réaction $E \rightarrow F$, proposer une explication pour l'attaque régiosélective de CH_3Li sur un seul des deux groupements carbonyles.