Hétérocycles aromatiques

Exercice 1. Soit les hétérocycles suivants :

Indiquer si les doublets libres des atomes d'azote et d'oxygène participent ou non à l'aromaticité. Indiquer l'état d'hybridation de ces hétéroatomes. Comparer les basicités respectives de la pyridine et du pyrrole en justifiant votre réponse.

Exercice 2. Soit les enchaînements réactionnels ci-dessous. Sachant que C et E sont des composés bicycliques, donner une représentation plane des structures A à E.

Exercice 3. Remarque : dans cet exercice les aspects liés à la stéréochimie seront négligés. Soit l'enchaînement réactionnel suivant :

$$\begin{array}{c|c} O \\ \hline \\ OH \\ \hline \\ A+B \\ \hline \\ (régioisomères) \\ \hline \\ (regioisomères) \\ (regioisomères) \\ \hline \\ (regioisomères) \\ (regioisomères) \\ \hline \\ (regioisomères) \\ ($$

On donne la structure du composé **E** et les filiations des différents produits obtenus: **A** donne **C** qui donne **E** et **B** donne **D** qui donne **F**. Donner une représentation plane de **A**, **D** et **F**. Proposer ensuite un enchaînement réactionnel pour préparer majoritairement le composé **G** (ci-dessous) à partir de **E**, sachant que lors de la première étape, un des produits utilisés sera :

Enfin, imaginer un enchaînement réactionnel permettant de préparer majoritairement le composé **H** à partir de **G**, sachant qu'une des étapes réactionnelles est une réaction haloforme.

$$CH_3$$
 CH_3 $CO_2C_2H_2$

Exercice 4. *Remarque* : dans cet exercice les aspects liés à la stéréochimie seront négligés. Soit l'enchaînement réactionnel suivant :

Sachant que **B** et **C** sont des composés tricycliques, donner une représentation plane des structures **A** à **C**.

Exercice 5. Proposer un enchaînement réactionnel pour préparer le composé $\bf A$ (formule cidessous) à partir de la phénylhydrazine ($H_5C_6NHNH_2$).

Remarque: la dernière étape réactionnelle fera intervenir comme réactif: Br(CH₂)₃N(CH₃)₂

$$(CH_2)_3$$
 $N(CH_3)_2$

Exercice 6. Compléter l'enchaînement réactionnel suivant :

Exercice 7. Expliquer la réaction suivante.

<u>Remarque</u>: le mode de préparation d'hétérocycle impliqué dans cet exercice n'a pas été explicitement vu en cours mais toutes les réactions mises en œuvre lors du mécanisme sont connues (cours $1^{\text{ère}}$ et $2^{\text{ème}}$ année):

butanedial
$$H^{\bigoplus}$$
 cat. P_2O_5

Corrections

Exercice 1.

- 1. pas de participation, sp2
- 2. participation, sp2
- 3. participation, sp2

La pyridine est plus basique que le pyrrole du fait d'une plus grande disponibilité du doublet libre de l'azote qui n'est pas engagé dans la conjugaison.

Exercice 2.

Exercice 3.

Exercice 3. (suite)

Exercice 4.

$$\begin{array}{c|c} & & & \\ & & & \\$$

Exercice 5.

Exercice 6.

Exercice 7.